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Phase and power density distributions on plane apertures of 
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Received 24 October 1977, in final form 6 December 1977 

Abstract. Complex coordinates are used under the assumptions of geometrical optics to 
study the relations between phase and power density distributions on plane apertures of 
reflector antenna systems. No symmetry assumptions are made and the results form a 
generalisation of existing work in the field. The synthesis of a dual reflector system to 
produce given aperture phase and power distributions when illuminated by a point source 
of prescribed power density is shown to depend on the solution of a particular partial 
differential equation of the Monge-AmpBre type. Finally it is shown that even in cases of 
symmetry the use of complex coordinates simplifies the design equations. 

1. Introduction 

The majority of papers on the geometrical optics design of reflector antennas assume 
that the system has some kind of symmetry, for example, rotational symmetry about 
an axis. The differential equations governing the system are then ordinary differential 
equations. Brickell er a1 (1977) show that the case of a single reflector with a point 
source of radiation can be treated in a reasonably simple manner, without such 
assumptions, by the use of complex coordinates. The incident and reflected ray 
directions are parametrised by complex coordinates q, 5 respectively and the mapping 
between them is simply S=q+l/L., ,  where L ( q )  is a function determining the 
reflector. The basic differential equations are partial differential equations. 

In the present paper we apply similar methods to study the relations between 
phase and power density distributions on plane apertures of single and dual reflector 
systems with a point source of radiation. We parametrise source ray direction by the 
complex coordinate q and points mapped on the aperture plane by the complex 
coordinate U. The mapping involves the phase function I (w)  and can be used either to 
synthesise the reflector or obtain the power density distribution over the aperture. In 
the dual system the mapping also depends on the subreflector and it is shown that both 
phase and power distributions over the aperture of the main reflector are necessary to 
synthesise the system. We do not make any symmetry assumptions and consequently 
the paper generalises some of the work of Galindo (1964). 

We introduce our notation in 0 2. It is first applied in P 3 to study the relation 
between phase and power density on a plane aperture of a single reflector. The 
application to dual reflector systems is given in P 4 and in 0 5 we specialise to the 
rotationally symmetric case in order to relate our methods to those of Galindo. 
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2. Notation and a basic lemma 

Unit vectors in space can be parametrised by a complex coordinate in the following 
way (see figure 1). Choose a rectangular Cartesian coordinate system (x, y, z )  and 
denote its origin by 0. Let S denote the unit sphere of centre 0. Consider an 
arbitrary unit vector OP where P is some general point on S .  Under stereographic 
projection from the point N(0, 0 , l )  P projects to a point P in the plane z = 0. We 
given P (and hence the unit vector OP) the complex coordinate 7 = x +iy where 
(x, y, 0) are the Cartesian coordinates of P’. 

Figure 1. Diagram showing coordinate system. 

A general vector U has a set of components ( a l ,  a2, as) with respect to the 
Cartesian coordinate system. We shall write (a, a3)  for this set where a is the complex 
number al  + ia2. With this notation the scalar product U .  b is given by 

U .  b = 5 ( a P + & ) + ~ 3 6 3  

where /3 = 61 + i62 and a bar denotes the complex conjugate. 

expressed in terms of its complex coordinate 7 as 
For example, a calculation shows that the components of the unit vector OP are 

(&-) 
where 1771 is the modulus of T .  It follows that the standard spherical polar coordinates 
of P are related to 7 by 

Id2- 1 
Id2+ 1’ 17712+ 1’ 

cos 8 = 277 ei* sin e = 

We shall also need an expression for the complex coordinate v of the unit vector in 
the direction of the non-zero vector a = (a, as). A short calculation shows that 

v = a / ( a  - a3) (3) 
where a is the length of U. 

A technical lemma which will be used later is now stated and proved. 

Lemma 1 .  Let b be a vector of components @,g), k a unit vector of complex 
coordinate p and m a scalar. Define real scalars H, K by H = m2 - b2,  K = m - k . b. 
Then, provided that K > 0, the equation 

U -ak = b -mk  (4) 
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has the unique solution 

a = b - (H/2K)k.  

The length a of a is given by 

a = m - (H/2K),  

and its direction by the unit vector of complex coordinate 

v = ( g  + m - PfiMP + ( g  - m)fi  1. 

Proof. Any solution to equation (4) is necessarily of the form b + Ak where A is a scalar 
and this expression is a solution if, and only if, there exists a > O  such that 

A+m=a,  a'= b2+A2+2Ab. k. 

Substituting for a in the second condition we find that A = -H/2K. Consequently any 
solution is unique. The fact that 

a = b - (H/2K)k 

is a solution follows from the inequality 

a = m - ( H / 2 K )  = Jb - mkI2/2K > 0 

where (b  - mk( denotes the length of the vector b - mk. This remark also justifies the 
formula (6). 

To prove the formula (7) we use the equation (3) to obtain 

(ICL l 2  + 1 - HCL v =  
(/PI2+ 1)K(m - g ) - H '  

The formulae 

(IF I2 + 1 )K = ( m  - g)lCL l 2  + m + g - CLB - PP 
H = m - g2 - PP 

can be obtained from the definitions of H and K. We substitute these in the 
expression for v to obtain 

P(m - dICL l 2  + P(m + g >  - fiP2 + ( g  - m)(g + m>CL 
(g - mI21CL I* + ( g  - "CLP + CLPI+ PP 

- - (g+m-Pfi)(P+(g-m)CL) - g+m-Pfi  
( P  + (g - m)fi)(P + (g - m1cc.1- P + (g - m)fi  

v =  

Thus the lemma is proved. 

Because we are using a complex coordinate it is convenient to introduce deriva- 
tives with respect to this coordinate. Given a function f of q = x +iy (in general, f is 
complex-valued) we define 
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These derivatives commute, that is f,? = f?, and also satisfy the relations 

7tl =m, 7- =a 

(L,? - 6)’- IL,, + a  l 2  = d 

where f is the complex conjugate function. 
The partial differential equations which arise in this paper have the form 

(8) 
where L is a real-valued function of 7 and the coefficients a,  b, d are functions of 7, L 
and first-order partial derivatives of L. In addition the functions b, d are real valued. 
It can be shown that the equation is a Monge-Amp5re differential equation and that it 
is of elliptic (hyperbolic) type if d > 0 (d < 0). 

3. Phase and power density on a plane aperture of a single reflector 

Figure 2 shows the path of a ray from the source 0 of radiation. It is reflected at the 
point R on the reflector and passes through the plane aperture at Q from left to right. 
Unit vectors in the directions of the rays at 0 and Q are denoted by p and q 
respectively. We write OR = r and OQ = U and choose a rectangular Cartesian 
coordinate system with origin at 0 and z axis perpendicular to the aperture. The 
complex coordinates of p, q relative to this system are denoted by 77, l respectively. 
The components of U are expressed as (U, d). Thus d is the perpendicular distance of 
0 from the aperture and we can regard w as a complex coordinate for the point Q on 
the aperture. 

Plane oDerture 

1 - d - L  

Figure 2. Ray diagram for single reflector. 

We assume that there is a unique ray at each point of the aperture so that a phase 
function l(o) is defined. This prohibits any caustic points on the aperture. The 
function l ( w )  determines 5 as a function w. To see this we first apply the theorem of 
Malus (see, for example, Cornbleet 1976, p 361) which shows that q .  do = dl  that is 

( r d w + l d G ) = d l .  
1 + I l l ’  

We proceed to solve these equations for 5. We have at once that 
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which is a quadratic for 14‘1. Since q points to the right of the aperture we must choose 
the root which is less than or equal to unity. 

Consequently 

Ill = (1 - ( I  -411~12)1’2)/21Ll 

and therefore 

5 = 2 L / (  1 + (1 - 411, 1 2 ) 1 ’ 2 ) .  
We note that the phase function necessarily satisfies the inequality l~,lc~. 

The formulae 

can be obtained from equation (10). They will be used later. 

over the aperture. The equation 
Our aim in this section is to establish a relation between phase and power density 

r -rq = v - lq 

is easily obtained and lemma 1 shows that r is given by 

r = v - (H/2K)q (12) 

where 

H = 1’- /wI2 -d2  

(1 +1lI2)K = l(1 +(l/2)+d(l-/112)-rL3 -zw.  

The coordinate 4‘ is given in terms of w by equation (10) and so the reflector, given by 
equation (12), is determined in terms of w by the phase function. 

Lemma 1 also shows that the complex coordinate 7 of the unit vector p is given by 

l + d - w c  ‘ = 6 + (d - 1):‘ 

We regard this equation as determining a mapping w + 7 between the aperture 
plane and the unit sphere of centre 0. It will alter areas (see appendix) by the factor 

(1+1’12)211~~1 4 2 - 1 %  2 I. 

Therefore, if 1(q)  denotes the power density of the source and G(o) the power 
density flow normal to the aperture 

Once we have calculated the partial derivatives q,, ve equation (16) leads to the 
desired relation between 1 and G. 

Straightforward calculations using equations (15) and (9) lead to the formulae 

H[, +pK ~c~ - K 
(w + (d - l ) f ) 2 ’  vs = (6 + (d - l ) f )*‘  77, = 
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We may also use equation (15) to show that 

(l+\v12)16 +(d-l)a2=(1+1112)(21K-H).  (18) 

Finally, by substituting these results in (16) and using equations (9) and (11) to 
replace 5 and its derivatives by those of 1, we obtain 

where h = H / K .  We note that from equations (13), (14) and (15) h and 17 can be 
expressed in terms of 1 and its first derivatives. 

One can regard the relation (19) in two ways. If the density function G ( w )  is 
specified on the aperture then it becomes (as can be seen from equation (8)) a 
Monge-Ampkre differential equation for I .  The reflector is uniquely determined once 
a solution is known. 

On the other hand if the phase function l ( w )  is specified then equation (19) is a 
formula for the power density function G ( w ) .  For example, suppose that l ( w )  is 
required to be constant along all lines in the aperture plane parallel to a fixed direction 
(this condition characterises the reflector designs of Dunbar 1948). We take this 
direction as the direction of the y axis so that 1 is a function f of x only. 

We find 
1 w = I - =  0 ir, lw = l,, = ar, 

and equation (19) gives 

where h = H / K  = ( f 2 - x 2 - y 2 - d 2 ) / { f - ~ f ’ + d [ l - ( f ’ ) 2 ] 1 / 2 } .  The function f can be 
chosen to give a specified form for G/Z over the central line y = 0 in the aperture. 

In particular we can take f to be a constant. Then with A = f + d ,  equation (20) 
becomes 

G 4A2 
I ( A 2 + ~ 2 + y 2 ) 2 ’  
-= 

a well known formula for the parabolic reflector (see for example Collin and Zucker 
1969). 

4. Phase and power density on a plane aperture of a dual reflector system 

Figure 3 shows the path of a ray from the source 0 of radiation. It is reflected at the 
points R, S on the reflectors and passes through the plane aperture of the second 
reflector at Q from left to right. We denote the unit vectors in the directions of the ray 
at 0, R and Q by p, t and q respectively. We write OR = r, RS = s and OQ = U. We 
also choose a rectangular Cartesian coordinate system with origin at 0 and z axis 
perpendicular to the aperture. The complex coordinates of p ,  t, 4 relative to this 
system are noted by v , t ,  [ respectively. As in 0 3 we express the components of U as 
(U, d) so that d is again the perpendicular distance of 0 from the aperture and w is a 
complex coordinate for Q. 
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Plane aperture 

I/ 

Figwe 3. Ray diagram for dual reflector system. 

We suppose that there are no caustic points on the aperture so that a phase 
function l(o) is defined. As in 9 3 l(u) determines 5 as a function of W ,  the explicit 
form being given in equation (10). 

Our aim in this section is again to establish a relation between phase and power 
density over the aperture. In the dual reflector system this relation will involve the 
first reflector. Therefore there is the possibility of designing the first reflector to give 
pre-assigned phase and power density distributions over the aperture. 

Let us suppose the first reflector to be given by an equation r = r ( q ) .  The 
Cartesian components of r are 

It is convenient to introduce the function T = r / ( l  + (7 1 2 )  so that the above components 
can be written as 

(2777, 4?12 - 1)). (21) 

It is also convenient to introduce the function L = In T.  Brickell et a1 (1977) show that 
Snell’s law at the f i s t  reflection can be expressed in terms of this function as 

L, = 1/(6-77). (22) 

The relation 

s - s q  = u  - r - (1  - r ) q  

is easily established. It follows from equation (21) that 

U - r = (W -27)T, d - T(17)12- 1)) 

and consequently, from formula (7) of lemma 1, 

We substitute this expression for 4 into equation (22) and obtain 

6 -22ij~ + (27 + d  - 1)r 
1 + d - w [ -  &q + ( 1  - d)fq ’ 

L, = 
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We shall regard equation ( 2 3 )  as establishing a mapping 9 + w  between the unit 
sphere of centre 0 and the aperture. Of course this mapping depends on the phase 
function and the first reflector. The formula ( 5 )  of lemma 1 shows that 

r + s = u - ( H / 2 K ) q ,  (24) 
where H and K are functions of w and 7 which we shall shortly make explicit. Thus 
the second reflector is determined in terms of 77 by the first reflector and the phase 
function. 

H = ( 1  - r l2  - ju -rI2 = l 2  - /uI2 -2r(l - p .  o) 

Explicit formulae for H and K are as follows: 

= 1 2 -  (wI2 - d 2 -  2 ~ ( 1 ( 1 +  \7 l2 )+d( l  - 1 ~ 1 ~ ) -  ?jw - q&). (25) 
K = ( Z - r ) - q  (u - r )  

= [If1 + Id2)+ d ( 1 -  Id2)- &J - ~5 + 2 7 ( X  + 7 k -  hI2 - 1 d 2 ) 1 / ( 1  + 1d2). 
(26) 

Let 1(q) denote the source power density and G ( w )  the power density flow normal 
to the aperture. Then, by the same argument as that leading to equation (16), 

Once we have calculated the partial derivatives w,, wq from equation (23) then 
equation (27) provides the desired relation between the functions I ,  G and L. 

To do this calculation it is convenient to think of the right-hand side of equation 
(23) as a function F(w, 7) of the variables w ,  77. This is achieved by regarding I ,  5 as 
functions of w, and T as a function of 7. We find the partial derivatives of F to be 

F, = ( - H Z ~  - K ~ ) / R ~ ,  

F,, = L:, F$ = -2TK(1+ \5(2)/lR12 (29) 

FG = (-HC+ + K ) / R 2  (28) 

where 
R I + d  -0~k-87 + ( I  -d)rq .  

In the last pair of these formulae equation ( 2 3 )  has been used. This equation is 
also used to give the formula 

We differentiate the equation 

L, = F(w, 7) 
and obtain 

L,, = F-w, + FGG, + L,, 2 

L,,j = F a +  + F,& + b, 

where b = Fie We note, from equation (29), that b is real. These equations and their 
complex conjugates can be combined in the simple matrix equation 

[L,,=,-b L - - - L i l = [ F ,  n? 7 FG1[8, 
L,, - L: L,e - b F, F,- W, W- 
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Taking the determinants of both sides we obtain 

This is essentially the relationship we require. However we can make it more 
explicit by using the formulae (9) ,  ( l l ) ,  (27),  (28),  (29)  and (30).  With the notation 

p = l + d - 2 e L / 7 7 I 2 ,  Y = I 1 + 77L, 1 2 ,  s = l-(l-4\fu~2)1’2, h = H/K 

we find that 

(L,,j -b)2- lL, ,  -Li12 =*B{[hf-  -(l-211,12)]2-lhfww +21z12}Z(77)/G(w) (31)  

where 

-2eLy  4Y2 b =  and B =  
@ - $ h a ) ’  ( 1  - S)(p -; hs)’( l+ 17712)2 ’ 

The relation ( 3 1 )  can be regarded in many ways. If the functions I(@), G ( w )  are 
given we can regard it as a partial differential equation for L, provided that we 
substitute for w the function of 7, L and its first derivatives obtained by solving 
equation (23).  For example suppose that 1 is a constant function on the aperture. 
Equation (31)  becomes 

(L,,j - b)2-  IL,, -L;I2 = * B I ( q ) / G ( w )  

where 

b = -2  eLy/P, B =4y2/p2(1+17712)2. 

In this special case 6 = 0 (from equation (10)) and the solution of equation (23)  is 

We work out the relationship (32)  explicitly for the well known hyperboloid- 
paraboloid Cassegrain system (see, for example, Cornbleet 1976, p 85).  In this system 
the first reflector (the subreflector) is a hyperboloid of revolution and the source is at 
one focus. The second reflector (the main reflector) is a paraboloid of revolution with 
focus at the second focus of the hyperboloid and axis in the direction 6 = 0. The 
configuration assumed is shown in figure 4 where the hyperboloid axis is tilted relative 
to the paraboloid axis. In this system the shadowing by the,subreflector of the main 
reflector aperture can be minimised. 

A X I S  of paraboloid 

/ 

Figure 4. ‘Open’ Cassegrain system. 
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Let the direction of the hyperboloid axis be 770. Then the equation of the hyper- 
boloid is 

ulr  = e cos 8 - 1, 

where U is the semi-latus rectum and e the eccentricity. Now 

and so if we write 

2770 k=- l77Ol2 - 1 a=- 
1 + 17701’’ 17701’ + 1 

we obtain 

L r U U e =-- 
1 + ~ T I ~  - ( 1  + 17 I2)(e cos 8 - ij= e577 + eaij + Ir)12(ek - 1)- ( I  +e&)* 

It follows that 

ea + V(ek - 1 )  L - = -  ‘ e577+eaij+i7712(ek-1)-(1+ek)‘ 

Thus putting A = 1 + d, the relation between 77 and w turns out to be the bilinear 
one 

[2u - A ( e k  - 1)]77 - A e a  
e G T - ( l + e k )  

w =  

We use the formula to obtain an explicit expression for G ( w ) / I ( q )  from equation 
(16). We first invert it to get 

( l + e k ) w - A e a  
77 = e& + [ A ( e k  - 1 ) -  2 u ]  

and then we differentiate, noting that k 2 + ~ a ~ Z =  1, to obtain 

A ( e 2  - 1 ) -  2 u ( l +  e k )  
{e&w + [ A ( e k  - 1 ) -  2 ~ ] } ~ ’  

7718 = 0. 77, = 

We substitute from these formulae into equation (16)  and find that 

-- G ( w )  
1(q )  - [(e&w + A ( e k  - 1)-2uI2+I(ek + l)o -AeaI2j2* 

4 [ A ( e 2 -  1)-2u(ek + l)]’ 

5. Dual reflector systems with rotational symmetry 

The coordinates are assumed to be set up as in 0 4 and we suppose also that the source 
has a power density I which has rotational symmetry about the z axis. We now 
consider the problem of designing a dual reflector system which has the z axis as an 
axis of symmetry and which produces a specified phase function 1 and power density 
function G on the aperture, where I ,  G are also rotationally symmetric about the z 
axis. 
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We put (q 1 = X ,  (w ( = Y. The symmetry assumptions imply that I is a function of X 
and I ,  G are functions of Y. To calculate a derivative, say 16, we proceed as follows. 
Since Y 2  = wG we have 2 YY, = w and consequently 

16 = l'(Y)YG = l'(Y)w/2Y. 

A major simplification in the rotationally symmetric case is that equation (27) 
produces at once a differential equation for Y as a function of X. To obtain this 
equation we note that for rotationally symmetric systems 

w = * Y,/X. ( 3 3 )  
Let Y' denote the derivative of Y with respect to X .  Then it follows from the relation 
( 3 3 )  that 

and therefore 

(w, (2 - /wq/2  = YY' /X .  

Thus equation (27) leads to one or other of the ordinary differential equations 

4x 
( 1  + x2)21(x) 

YY'G( Y )  = f (34 )  

where we note that the choices of sign in equations ( 3 3 )  and ( 3 4 )  are not related. 

from equation (10) that 
We can determine the first reflector using equations ( lo) ,  (23) and (34) .  It follows 

5 = wl'( Y ) /  YZ 

where we have written 2 for the expression l+[ l - ( l ' (Y) )2]1 '2 .  For a rotationally 
symmetric reflector the function T will be a function of X only. Consequently, 
substituting for in equation (23) and making use of the relation ( 3 3 ) ,  we obtain 

The choice of sign in this equation is related to the choice in the relation (33) .  
Thus, having solved the differential equation (34 )  to obtain Y as a function of X, we 
can substitute this function into equation (35) .  The result is a choice of two ordinary 
differential equations for T which can be solved subject to an initial condition. 

The final step is the determination of the second reflector which is easily obtained 
using equations (24),  ( 2 5 )  and (26). 

As an example of the design of rotationally symmetric systems we follow Galindo 
(1964) and assume that 

and suppose that both 1 and G are constant functions on the plane aperture. 
The differential equations (34 )  become 

4X( 1 - X2)" 
(1 + X2)"+2 

W ' G  = f 
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which integrates to give 

where C is a constant of integration. We will design the system to include a ray along 
the z axis so that Y(O)= 0. Consequently C = * l / ( n  + 1 ) .  It is convenient to write 
G = 2M/(n + 1 )  where M is a positive constant. Then we obtain 

1-x2 "+l 

1 + x 2  
M Y 2  = 1 - (-) 

as only the choice of negative sign is sensible. It follows that 
1/2 

Y = ( [  1 - ( s ) " + l ] M - l ]  

The equation ( 3 5 )  becomes, in the present special case 

where A is the constant 1 + d and Y is the function of X obtained in equation (36). 
Given an initial value ~ ( 0 )  (=r (O) )  we can solve either of the resulting differential 
equations and so obtain a first reflector. Indeed the substitution cr = 1 /T produces the 
linear differential equations 

which can be solved explicitly in terms of integrations. The resulting reflector profiles 
are given by transcendental functions of X rather than conic sections as in the 
Cassegrain systems. 

The case in which n = 1 corresponds to the Schwarzchild system which has some 
useful properties enabling it to be considered by White and DeSize (1962) as a 
prototype for a scanning antenna system. For this case the solution of equation (37) 
yields 

2 x 2  2 TFJ(AFF) 
U = - + K [ A  + ( A  T F ) X  ] 

A 

where F = 2M-l" and K is a constant determined by ~ ( 0 ) .  

components of r + s as 
The second reflector may be obtained by using equation (24) to obtain the 

1 [ ( r Y 2 + 2 ( A r 2 X Y ) ]  
~ ( u A  - 2 X 2 )  

where U is given by (38) and Y = FX/( l  + X 2 ) .  

Appendix 

Let w -* r,(w) be a mapping between the aperture and the unit sphere of centre 0 
expressed in terms of the complex coordinates r,, W .  We wish to show that the 
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mapping alters areas by the factor 

4 2 2 
2 2ll77Ul -17741 I 

(1+177/ 1 
In spherical polar coordinates (e,4) the area element on the unit sphere is 

sin 8 de  d4.  Thus, if the mapping is expressed in terms of (e, 4 )  and rectangular 
Cartesian coordinates ( x ,  y )  on the aperture, the formula for the factor is 

where a(8, ~$)/a(x, y )  is the Jacobian determinant 

1: 21. 
We shall use the coordinates (e, 4) given in terms of 77 by the equations (2) and the 
coordinates ( x ,  y )  given by w = x +iy .  

A well known property of Jacobian determinants enables us to write 

and we shall deduce the formula (A. 1) from (A.2) by evaluating the determinants on 
the right-hand side. We obtain from the equations (2) that 

7 1 

and consequently 

-2fj 1 
(1  + I77 I2Y’ 2i77 

(bv =-. sin e e,, = 

It follows that 

Because 

formula (A.l)  is a consequence of (A.2) and the equations (A.3) and (A.4). 
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